Advanced Vehicle Technologies

Utah Debate Conference 2006

Glade Sowards
Utah Division of Air Quality

Why advanced vehicle technologies?

- Fuel economy/cost savings
- Energy security
- Air quality
- Reducing greenhouse gas emissions
- Enhanced performance attributes

Overview

- Battery electric vehicles
- Hybrid vehicles
- Advanced internal combustion engines

Electric vehicles

Battery electric vehicles (BEVs)

Pros:

- Clean at point of end-use
- Allows fuel diversification
- High torque
- Enhanced stability control/steering options
- Reduced mechanical complexity

Cons:

- Slow
- Poor range: 30-120 miles
- Excessive charging times: 8-10 hours
- Only as clean as the generation source: Electricity may be generated from coal

BEVs: Not quite dead yet...

- Lithium-ion battery technology may help BEVs
 - Similar to laptop, cell phone batteries
- Three BEVs that use Liion batteries:
 - tzero: 0-60 mph in 3.6 seconds; 300 mile range
 - Eliica: 248 mph
 - Venturi: 0-50 in 5 seconds; 200 mile range

Enhanced lithium-ion batteries

- New batteries using nanotechnology
 - 1/5 weight of current batteries
 - Almost fully charged in 5 minutes
 - Longer service life (up to 10x)
 - Safer
 - Used in new power tools like cordless drills
- Mitsubishi and Subaru are developing BEVs for Japanese market

Fuel cell electric vehicles (FCEVs)

- Similar to BEV
- Uses different technologies for storing and processing energy
 - Fuel is hydrogen
 - Stored in a tank
 - Converted to electricity via the fuel cell
 - Fuel cell invented in 1839
 - Forward power provided by electric motors similar to BEVs

Hydrogen: The perfect fuel?

- Hydrogen is the most abundant element in the universe
- Two-thirds of the Earth's surface is covered by water: H₂O
- Fossil fuels also contain hydrogen
- Burns cleanly in an internal combustion engine
- Can be used in a FCEV
- Problem solved, right?

Hydrogen chemistry lesson

The following reaction gives off energy in the form of heat (exothermic):

$$2H_2 + O_2 = 2H_2O + Energy$$

You need energy to get hydrogen...

Unfortunately, to get hydrogen from water for fuel, the equation works in reverse (endothermic):

Fuel cell car

Using hydrogen in FCEVs?

- Hydrogen is simply a storage medium
- Must be released from water or fossil fuels - requires energy
 - Expensive: \$4/gallon
- Doesn't solve greenhouse gas problem unless from renewables
 - Really expensive: \$7-15/gallon
- Difficult to transport and store

FCEV limitations

- Forecast for FCEVs: not until 2025 or later!
- Several technological hurdles
 - On-board storage
 - Range
 - Durability
 - Cold start capability
- Current fuel cell vehicles cost \$1-2 million per car or more!

FCEV quotes:

- When will fuel cell cars replace gasolinepowered cars?: "If I told you never, would you be upset?" – Bill Reinert, Toyota, January 2005
- "The total time to noticeable impact is likely to be more than 50 years." – MIT, July 2005
- "We have a way to go before we can make fuel cells commercially viable." – Noordin Nanji, Ballard Power, January 2006

Hybrid vehicles

Question: Which vehicle is a hybrid vehicle?

Answer: All of them!

Hybrid vehicles

- Hybrid Electric Vehicles (HEVs)
- Fuel Cell Hybrid Vehicles (FCHV)
 - Most FCEV designs utilize hybridization
- Hydraulic Hybrids
- Flywheel Hybrids

Hybrids and vehicle energy use

- Hybrid "smooth out" a vehicle's driving cycle
 - Energy is saved when there's some to spare
 - Used when extra power is needed

Like riding a bicycle...

It's harder to get a bike going than to keep it going.

It's also harder to ride up a hill than on level ground.

It's easy to coast down a hill...
You might even want to use your brakes!

Like riding a bicycle...

It's harder to get a bike going than to keep it going.

It's also harder to ride up a hill than on level ground.

It's easy to coast down a hill...

You might even want to use your brakes!

Hybrid electric vehicles (HEVs)

- HEVs typically consist of a combination technologies:
 - Off-at-idle/enhanced alternator-starter motor
 - Battery or ultra-capacitor
 - Electric motors
 - Thermal storage
 - Electric power steering
 - Electric air conditioning compressor
 - Cylinder deactivation
 - Atkinson cycle/Miller cycle engine

HEV designs

Series

- ICE runs generator
- Motors turn wheels
- No mechanical transmission

Parallel

- Motors help ICE via mechanical transmission
- Can't run on motors alone

Series/Parallel

- Varying amounts of power supplied by ICE, motors or both
- Can run in electric-only mode

HEV designs

REDUCTION GEAR

Other HEVs

- Diesel-electric HEVs
 - Combines high-efficiency of diesel engines with HEV components
 - Problem: additional expense for both diesel and HEV systems
- Plug-in HEVs
 - Can charge from electricity grid
 - Allows short electric-only range (~20-30 miles)
 - Long-range trips possible using gasoline engine
 - Problem: larger battery is very expensive

Current HEVs: 10 models

Model	Make	City	Highway
Insight (manual)	Honda	60	66
Civic	Honda	49	51
Accord	Honda	29	37
Prius	Toyota	60	51
Highlander (AWD)	Toyota	31	27
RX400h (AWD)	Lexus	31	27
Escape (AWD)	Ford	33	29
Mariner (AWD)	Mercury	33	29
Silverado (4wd)	Chevy	17	19
Sierra (4wd)	GMC	17	19

Future HEVs: 2006-2010

Model	Make	
Lexus GS (spring 2006)	Lexus	
Lexus LS (2007)	Lexus	
Camry (spring 2006)	Toyota	
Altima	Nissan	
Vue (summer 2006)	Saturn	
Tahoe/Yukon (2008)	Chevy/GMC	
Fusion/500	Ford	
Malibu	Chevy	
Escalade	Cadillac	
Tacoma or Tundra	Toyota	
Equinox	Chevy	
Durango	Dodge	
Jetta	Volkswagen	
Rio	Kia	
Accent	Hyundai	
X-3	вмш	
Tribute	Mazda	
Subaru	Subaru	
Porsche	Porsche	
Mercedes	Mercedes	

HEV sales

- 176,500 HEVs sold nationally in 2005
- 780,000 HEVs sold annually by 2012
- Over 1,100 sold in Utah in 2005
 - Sales have nearly doubled each year!
 - Still a small fraction (1%) of cars sold in Utah annually

HEV incentives

- Federal
 - Federal tax credit
- State
 - No state tax credit for HEVs
 - Single-occupant HOV lane access... might change!
- City
 - Free parking in downtown SLC
- Private
 - Travelers Insurance 10% discount
 - HEV drivers have been involved in fewer accidents

HEVs: Slow, gutless, boring, impractical?

- Toyota Alessandro Volta
 Hybrid Concept: 0-60 mph
 in 4 seconds
- BMW X3 Hybrid: 440 lb-ft of torque
- □ Lexus LS hybrid: >380hp
- Toyota is planning a V-8 full-sized hybrid pickup

HEV pros and cons

□ Pros:

- Increased fuel economy
- Lower emissions
- Can reduce mechanical complexity
- Can provide smoother acceleration

Cons:

- Expensive (difficult to recoup costs)
- Can increase overall complexity
- Unproven battery life
- Don't always achieve EPA mpg ratings

Advanced internal combustion engines

Clean diesels: What??!

- Diesels are extremely efficient
 - 30-50 percent improvement in efficiency
 - Lower greenhouse gas emissions
- Over 50 percent of news cars sold in Europe are diesels
 - European diesel fuel is lower in sulfur
 - Allows for better exhaust treatment technologies

The 2006 VW New Beetle TDI can achieve 44 mpg on the highway (compared to 32 mpg for gasoline version)

Why does Europe like efficient diesels?

Gasoline Prices by Country (\$/gallon)

Ultra-low sulfur diesel in fall 2006

New diesel emissions controls

NOx adsorber/catalyst

Diesel particulate filter

Diesel oxidation catalyst

New U.S. diesels

2005 Jeep Liberty SUV

- 25% increase in fuel economy
- More low-end torque for towing
- 2005 Mercedes E320CDI
 - 27/37 mpg (city/hwy)
 - 600+ miles range
 - 2006 "BlueTec" model:
 - Low Emissions Vehicle
 - Emissions comparable to gasoline-powered Honda Civic

Other diesels – Coming soon!

- Mercedes:
 - GL320
 - ML320
 - **S**320
 - R-class sport wagon
- Honda
- BMW
- Nissan
 - Titan, Armada, Infiniti QX56
- Chrysler
 - Jeep Grand Cherokee
- Toyota
 - Tundra

High-mileage diesels

- VW 3-litre Lupo
 - Four seats
 - 78 mpg
 - Available currently in Europe

High-mileage diesels

- VW 1-litre car (experimental)
 - Small diesel engine
 - Composite body
 - Advanced aerodynamics
 - 235 mpg!!!

Partial Zero-emission Vehicle (PZEV)

- PZEVs are nearly as clean as traditional AFVs
- PZEV available on the Ford Focus as a \$115 option
 - Emits just 1 pound of smogforming emissions over 15,000
 - Normal Focus emits 10.7 pounds
- Exhaust can actually be cleaner than intake air!
- Runs on regular unleaded gasoline

Available PZEVs

- BMW 325i Coupe, Sedan, Wagon
- Ford Focus Hatchback, Sedan, Wagon
- Honda Accord Sedan
- Hyundai Elantra
- Mazda3
- Mitsubishi Galant
- Nissan Altima
- Nissan Sentra
- Subaru Legacy/Outback Sedan and Wagon
- Toyota Camry
- VW Jetta Sedan
- Volvo S60
- Volvo V70

Other technologies

- Variable valve timing
- Cylinder deactivation
- Advanced injection and combustion technology
- Weight reduction/use of composites
- Advanced aerodynamics
- Variable geometry turbocharger (VGT)
- Continuously variable transmissions (CVTs)

EPA emissions score*

Examples:

Honda Natural Gas: 9.5

Honda HEV: 9.5 Prius HEV: 9.5

Ford Focus PZEV: 9.5

Honda Civic: 6

'07 Mercedes Diesel: 6 '06 VW Jetta TDI: 1

*Max. allowed grams/mile

Which technology?

Vehicle	\$/mile*	Total Cost*
'06 Camry (gasoline)	\$0.51	\$38,326
'06 Prius (HEV)	\$0.51	\$38,385
'06 Jetta TDI (diesel)	\$0.49	\$36,924
'03 Camry (used gasoline)	\$0.40	\$30,353
'06 Corolla (gasoline)	\$0.37	\$27,488

*Source: Edmunds

Why not a Super-Hybrid or Franken-Car?

Why not a Super-Hybrid or Franken-Car?

Why not a Super-Hybrid or Franken-Car?

Cost is important!

Technology	Cost	Pollution Reduced (pounds)	\$/pound
Α	\$50	2	\$25
В	\$500	25	\$20
С	\$1000	30	\$33.33

If I only have \$1,000 to spend, which technology reduces the most pollution?

Cost is important!

Technology	Cost	Pollution Reduced (pounds)	\$/pound
Α	\$50	2	\$25
В	\$500	25	\$20
С	\$1000	30	\$33.33

If I only have \$1,000 to spend, which technology reduces the most pollution?

- C gives me 30 pounds reduced
- A gives me 40 pounds reduced
- B gives me 50 pounds reduced

Top secret research links:

- US Dept. of Energy Fuel Economy:
 - www.fueleconomy.gov
- US Dept. of Energy Data:
 - www.eia.doe.gov
- EPA Green Vehicle Guide:
 - www.epa.gov/greenvehicles
- Utah State Energy Program Energy Data:
 - http://geology.utah.gov/sep/newdata/statpage.htm
- Green Car Congress:
 - www.greencarcongress.com
- Electric Vehicle World:
 - www.evworld.com

Questions or comments?